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Aquifer structure identification using stochastic inversion

Dylan R. Harp,'? Zhenxue Dai,> Andrew V. Wolfsberg,? Jasper A. Vrugt,’

Bruce A. Robinson,* and Velimir V. Vesselinov?

Received 11 February 2008; revised 13 March 2008; accepted 17 March 2008; published 24 April 2008.

[1] This study presents a stochastic inverse method for
aquifer structure identification using sparse geophysical and
hydraulic response data. The method is based on updating
structure parameters from a transition probability model to
iteratively modify the aquifer structure and parameter
zonation. The method is extended to the adaptive
parameterization of facies hydraulic parameters by including
these parameters as optimization variables. The stochastic
nature of the statistical structure parameters leads to
nonconvex objective functions. A multi-method genetically
adaptive evolutionary approach (AMALGAM-SO) was
selected to perform the inversion given its search
capabilities. Results are obtained as a probabilistic
assessment of facies distribution based on indicator
cokriging simulation of the optimized structural parameters.
The method is illustrated by estimating the structure and facies
hydraulic parameters of a synthetic example with a transient
hydraulic response. Citation: Harp, D. R., Z. Dai, A. V.
Wolfsberg, J. A. Vrugt, B. A. Robinson, and V. V. Vesselinov
(2008), Aquifer structure identification using stochastic inversion,
Geophys. Res. Lett., 35, L08404, doi:10.1029/2008GL033585.

1. Introduction

[2] Determining field-scale parameters in sufficient de-
tail to capture aquifer heterogeneities is one of the
greatest challenges for predicting flow and contaminant
transport in large-scale subsurface systems. Uncertainty in
the form of conceptual model bias can be introduced in
modeling groundwater flow and contaminant transport
when aquifer structure is fixed based on sparse or
incomplete geophysical data [Chen and Rubin, 2003].
Once the structure has been fixed in this way, focus is
placed on model calibration of zoned parameters through
parameter estimation. This type of inverse method has
been applied in many instances to estimate flow and
transport parameters at various spatial scales [e.g., Cooley,
1983; Carrera and Neuman, 1986; Dai and Samper,
2006]. Deterministic aquifer structure may introduce larg-
er bias and uncertainty into a model than an inappropriate
choice of facies hydraulic parameters [Ye et al., 2004; Lu
and Robinson, 2006].
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[3] Given uncertainty in both aquifer structure and
hydrolic parameters Sun [2005] suggested “adaptive pa-
rameterization” to couple structure identification and pa-
rameter estimation in contaminant transport model
calibration. This provides a more complete inversion of
the model, allowing the optimization to explore combina-
tions of structure geometry and hydraulic parameters. Pre-
vious studies usually assumed that the aquifer parameter
zonations are randomly distributed. However, recent geo-
logical and geostatistical studies indicate that aquifer facies
distributions are spatially correlated [Carle and Fogg, 1997;
Ritzi et al., 2004].

[4] We propose a structure identification method that
accounts for spatial correlation by means of a stochastic
inversion of a transition probability model, in an analytical
framework [Dai et al., 2007], describing facies volume
proportions, mean lengths, and juxtapositioning. The tran-
sition probability model provides a nonparametric, Markov
chain approach to indicator geostatistics that is well suited
to applications with sparse information [Carle and Fogg,
1997]. The analytical solution allows structure identifica-
tion to be cast as a conventional inverse modeling prob-
lem, using statistical structure parameters (such as facies
volume proportions and mean lengths) to iteratively update
the transition probability model. The facies proportions
and mean lengths define the transition probability matrix.
Indicator cokriging simulation produces the aquifer facies
distributions, ensuring the statistical properties defined by
the transition probability model are maintained. In this
way, the aquifer structure is updated in the inversion,
while the information provided by the conditional data
(the sparse geological and geophysical data used to describe
the facies distribution in boreholes) is honored. The optimi-
zation of the model inversion is performed using a geneti-
cally-adaptive multi-method search algorithm called
AMALGAM-SO. This method was chosen as it combines
the strengths of several different evolutionary search
approaches and has been shown to achieve good efficiency
across a range of difficult synthetic benchmark problems
[Vrugt et al., 2008]. While other optimization algorithms
could potentially be implemented to drive the stochastic
inversion, AMALGAM-SO was selected to illustrate the
stochastic inversion methodology, without comparing its
performance to other optimization algorithms. This decision
was partly based on the assumption that, although an
analytical solution of the transition probability model is
utilized here, gradient-based methods would still have diffi-
culty given the stochastic nature of the structural variables,
which serve as inputs to the stochastic simulation. The
analytical solution of the transition probability model pro-
vides the computational efficiency necessary for the large
number of model evaluations required by the stochastic
inversion. The combination of the analytical solution of
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the transition probability model and AMALGAM-SO pro-
vides a robust, computationally efficient model inversion
with the ability to deal with complex fitness response
surfaces. While in the past, the stochastic inversion de-
scribed here was not possible, due to computational and
algorithmic limitations, we propose that through the use of
modern computers and analytically derived structure param-
eters [Dai et al., 2007], this type of inversion can be realized.

2. Facies Transition Probability Model

[s] Transition probability models have been used by
geologists to describe sediment facies distributions for a
few decades [e.g., Agterberg, 1974; Carle and Fogg, 1997].
Recently, Ritzi et al. [2004] and Dai et al. [2005] incorpo-
rated the work of Carle and Fogg [1997] to relate the
structure of the indicator random variables to proportions,
geometry, and pattern of the aquifer facies. Under two
assumptions: (1) the cross-transition probabilities depend
on facies volumetric proportions only, and (2) the juxtapo-
sitional tendencies between categories k and j are assumed
symmetric in the direction ¢, Dai et al. [2007] derived an
analytical solution for the transition probability model as

h() [
ti(hy) =pi+ (6u —pi)e ¥ (k, i=1,N), (1)

where #;,;(h,) is the probability of transitioning from facies k&
to facies 7 in lag distance h in direction ¢, p; is the
proportion of facies i, §;; is the Kronecker delta, )\; is the
indicator correlation length, and N is the number of facies.
By taking the partial derivative of the auto-transition
probability (equation (1) with k& = i) with respect to h, the
mean length (Zk,d)) can be related to \; as [Dai et al., 2007]

8tkk (h@) 1 1
i = (l—p) = ——. 2
oh, )\1( Pr) I (2)

hy—0+

Equation (2) defines the relationship between indicator
correlation length and the statistical parameters of facies
proportion and mean lengths. Using equations (1) and (2),
the continuous-lag transition probability matrix T in
direction ¢ can be defined by the facies proportions and
mean lengths as T(hy) = (#(hy))nxn. The transition
probability matrix can be used for indicator simulation of
aquifer facies using the indicator cokriging method [Carle
and Fogg, 1997].

3. Stochastic Inverse Method

[6] The transition probability model establishes a bridge
between aquifer statistical parameters and aquifer facies
distributions. By estimating these statistical parameters,
we are able to formulate a model inversion to identify
aquifer structure. A flow diagram of the stochastic inversion
method is presented in Figure 1.

[7] The transition probability model is updated by calcu-
lating the transition probability matrix, using values of
facies lengths and proportions generated as offspring of
the previous generation of solutions. The structure is
updated by indicator cokriging simulation using the
updated transition probability model, where a single reali-
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Figure 1.

zation is used to represent the collection of equally probable
realizations of the given transition probability model.
Updated facies hydraulic parameters are applied to the
structure zonation. Flow simulation is performed using the
Finite Element Heat and Mass transfer (FEHM) code
[Zyvoloski et al., 1997], employing observed or assumed
flow and boundary conditions, producing simulated tran-
sient head data.
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[8] The inverse modeling is performed with the goal of
minimizing residuals of hydraulic head, where the objective
function, J, can be defined as

M 2
93 (iu(8) i) . (3)
where fz(ﬁ) is an estimated head using parameter values in
the vector /3 constrained by B, which is defined by the upper
and lower parameter bounds, where B C R”, p being the
number of parameters, / is a measured head, and M is the
number of measured heads.

[9] Equation (3) defines the fitness function optimized
with AMALGAM-SO [Vrugt et al., 2008]. In general,
AMALGAMS-SO allocates the number of offspring at each
population size, N' = {N}, ..., Ng}, to ¢ algorithms using a
weighting scheme based on each algorithm’s previous
performance, where / is the population size index. In this
way, AMALGAM-SO is able to exploit the individual
strengths of selected algorithms at various stages of the
optimization. AMALGAM-SO employs a population incre-
menting restart strategy as its basis for collecting algorithm
performance information used to update the offspring allo-
cation [Vrugt et al., 2008]. This method has the advantage
of combining individual algorithm strengths by allowing
algorithms to exchange search information, and by adap-
tively distributing preference to algorithms exhibiting supe-
rior performance. In the current study, Covariance Matrix
Adaptation (CMA), Genetic Algorithm (GA), and Particle
Swarm Optimization (PSO) strategies were selected for the
g = 3 optimization algorithms, as this combination has
shown improved performance over other combinations
[Vrugt et al., 2008]. The sequence of population sizes used
in the current research was / = 5, 10, 15, 20. For more
details on the settings of AMALGAM-SO, refer to [ Vrugt et
al., 2008].

[10] The uncertainty associated with the resulting opti-
mized transition probability model is evaluated using con-
ditional simulation and presented as the final result in the
form of a structural probability map, which in the present
case defines the shape and location of clay facies within a
background of sand. A map of clay probability is produced
by approximating the one-location marginal probabilities
for clay by the sample mean of the clay indicator spatial
function /.4,,(x) with respect to the optimized structure
parameters as

1 R
Petay(X) = Pr{lup(x) = 1} = I ;Iclay,i(x)y 4)
where R is the number of realizations.

4. Synthetic Example

[11] The stochastic inversion method is illustrated by
means of a synthetic example of a confined aquifer with
borehole geophysical data and transient head measurements
from a synthetic pump test. The distribution of clay and
sand in cross-section, where clay facies are embedded
within a background of sand, is illustrated in Figure 2. In
this example, the permeability of sand is 10~'° m” and the
permeability of clay is 107'° m?. The synthetic structure
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Figure 2. Synthetic distribution where light grey repre-
sents sand and dark grey represents clay. The black vertical
lines indicate observation and pumping wells, as well as
locations where facies indicator data has been collected. The
white dots indicate head observation locations.

was generated by conditional simulation using prespecified
structure parameters. The proportion of sand (p,) in the
synthetic example is set at 0.7, while the proportion of clay
(pe) 1s 0.3. The mean lengths of the clay in the x (length) and
y (thickness) directions are 300 m and 20 m, respectively.
Conditional data, which comprises the indicator data of the
facies distribution, is collected as continuous bore log data
from observation wells defined along the transect at x = 0,
250, 500, 750, and 1000 m indicated by the vertical lines in
Figure 2. The well at x = 500 m is set as the pumping well
with a constant flow rate of Q = 10.2 kg/s. The boundaries
at x = 0 m and x = 1000 m are set as constant head
boundaries with heads of 100 m and 95 m, respectively. The
top and bottom boundaries at y =0 m and y = 200 m are no-
flow boundaries for this confined model formulation. Mea-
sured transient heads were collected at 20 discrete times
over a one year simulation, where the size of the time step
increased over the simulation. The measurements were
collected at 8 locations along the three central wells indi-
cated by white dots in Figure 2, where it has been assumed
that the pumping well has the ability to measure pressures
while pumping.

[12] This synthetic example was constructed to emulate
typical applications encountered in practice, while still
allowing a complete evaluation of the robustness and
efficiency of the stochastic inversion with respect to a
known structure and parameterization.

5. Results and Discussion

[13] Figure 3a presents a plot of the objective function
as a function of the number of model evaluations, where it
is apparent by the step-like decreases in the objective
function that AMALGAM-SO continues to locate im-
proved solutions throughout the inversion. Figures 3b
and 3c present the distributions resulting at the lower
and upper bounds of the parameters, respectively, defined
in the first two rows of Table 1. These two scenarios
represent two points along the convex hull of the solution
space B C R? that the stochastic inversion is required to
explore. Inspection of these two plots indicates the diver-
sity of structures considered in the inversion. Figures 3d,
3e, and 3f present distributions at key points during the
progression of the inversion, while Figure 3g presents the
distribution of the optimal parameters. By inspecting these
distributions, the transformation towards the synthetic
distribution is apparent. These stages of the optimization
are indicated in Figure 3a by their subfigure letter.
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Figure 3. (a) A plot of the objective function versus the number of model evaluations and (b—g) the aquifer structure as
different stages of the stochastic inversion, with their corresponding locations noted in Figure 3a. Refer to Table 1 for
detailed information on these aquifer structures. (h) Also shown is the clay probability map produced by stochastic
simulation of the optimized structural parameters.

Table 1. Structure and Hydraulic Parameters at the Lower (1a) and Upper (1b) Parameter Bounds, at Various

Stages of the Model Inversion, and for the Synthetic Example®

i 2
Iteration __Proportion Clay Mean Clay Mean Perm. log, m

Objective
Figure Number Sand Clay Length, m Thickness, m Sand Clay Function
3b la 0.6 0.4 280 15 —11 —14 876109
3¢ 1b 0.8 0.2 320 25 -9 —12 28459
3d 10 0.63 0.37 285.1 15.9 -9.33 —12.31 18440
3e 345 0.67 0.33 310.5 223 -9.99 —12.35 3.63
3f 2500 0.69 0.31 309.3 22.0 —10.00 —12.68 1.15
3g 6900 0.69 0.31 3194 232 —10.00 —12.89 0.15
2 True 0.7 0.3 300 20 —10 —13 0

“Refer to the figures identified in column 1 for plots of the distributions.
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[14] Corresponding tabular information on these distri-
butions, and the synthetic distribution (Figure 2), are
presented in Table 1, including iteration number, parameter
values, and objective function values. By inspecting the
decrease of the objective function plotted in Figure 3a and
listed in Table 1, it is apparent that dramatic improvements
are made during the course of the optimization, resulting in
an extremely small objective function value for the opti-
mized solution. This indicates that an estimate of the
aquifer structure has been obtained that closely mimics
the hydraulic response of the aquifer. Although an excellent
fit to the observed aquifer response has been achieved, it is
apparent in Table 1 that there is some discrepancy between
the parameters used to generate the synthetic aquifer
response, and those estimated with AMALGAM-SO. This
is explained by the stochastic nature of this inverse prob-
lem. Multiple realizations for the same parameter combi-
nation result in widely varying values of the objective
function. For instance, when evaluating 100 realizations
generated using the optimized parameters, objective func-
tion values are obtained that vary between 0.5 and 200,
with one outlier around 600. The standard deviation of
these objective function values is approximately 68.9. This
stochasticity allows different parameter combinations to
generate nearly similar responses of the aquifer. The interest
is therefore not so much in the exact values of the
parameters, but on the optimized structure that has been
identified. The latter has been successfully achieved, con-
sidering the very small value of the objective function, and
the close similarity between the true and inversely estimat-
ed facies distribution. Furthermore, 95.5% of the optimized
facies grid is assigned to the correct facies with respect to
the synthetic example.

[15] The final result is presented in a probability map of
clay facies distribution in Figure 3h where the estimated
one-location marginal probabilities of clay (equation (4))
were calculated from 100 realizations based on the opti-
mized structure parameters. While this does provide the
uncertainty of the structure based on the optimized transi-
tion probability model, it does not indicate the uncertainty
of the structure with respect to the aquifer response. Future
work will expand this uncertainty analysis by identifying
the set of plausible structures with regard to aquifer re-
sponse. It is apparent from a comparison of the true
distribution (Figure 2) and the resulting clay probability
map (Figure 3h) that the large structural features are
captured in the analysis. These results demonstrate that
the stochastic inversion is able to reduce the objective
function to a reasonably low value (indicating that the
response of the aquifer is modeled accurately) and that the
large structural features of the aquifer are identified ade-
quately given the limited amount of information provided in
the synthetic data.

6. Conclusions

[16] A method has been developed for aquifer structure
identification using stochastic inversion. The method is
based on updating structure parameters of a facies transi-
tion probability model to identify aquifer structure. This
approach allows the problem to be formulated in an inverse
modeling framework that can be extended to adaptive
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parameterization of facies hydraulic parameters by taking
advantage of the efficiency in model evaluations with the
analytical solution of the facies transition probability mod-
el. The inversion is driven by a multi-method genetically
adaptive evolutionary optimization approach [Vrugt et al.,
2008], providing a robust inversion capable of traversing
the complicated fitness landscape. Results are obtained as a
probabilistic estimate of the existence of facies at a
particular location given the optimized statistical structure
parameters. This method can be applied to pump-test
datasets, where some geophysical data are available, to
provide probabilistic estimates of the facies distributions
based on the hydraulic responses of the aquifer.
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